PHASE EQUILIBRIA IN THE METHANOL-WATER-1-BUTANOL SYSTEM

O.PROCHÁZKA*, J.SUŠKA and J.PICK

Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague 6

Received March 27th, 1974

The mutual solubility of components in the water-1-butanol system as a function of temperature (from 80°C up to the critical solution temperature) and the mutual solubility of components in the methanol-water-1-butanol system at 25, 45, and 65°C were measured. Simultaneously, the vapour-liquid equilibrium in the methanol-water-1-butanol at a pressure of 760 Torr in homogeneous region was determined. The vapour-liquid equilibrium data were correlated by the Redlich-Kister equation.

In connection with a systematic study of phase equilibria of multicomponent systems, the behaviour of the system of three strongly polar substances was studied.

EXPERIMENTAL AND RESULTS

Preparation of pure substances. Methanol, an analytical reagent, was dried with Grignard's reagent and distilled over on a packed column; b.p. $64 \cdot 7^{\circ}$ C/760 Torr, d_4^{25} 0.7865, n_D^{25} 1.3267 (ref.¹ gives $64 \cdot 50 - 64 \cdot 75$, 0.7865–0.7867, 1.32657). 1-Butanol, an analytical grade reagent, was distilled over on a forty-plate bubble-cup column; b.p. $117 \cdot 9^{\circ}$ C/760 Torr, d_4^{25} 0.8057, n_D^{25} 1.3974 (ref.¹ gives $117 \cdot 7 - 118 \cdot 0$, 0.80567–0.80572, 1.3970–1.3974). Redistilled water was used.

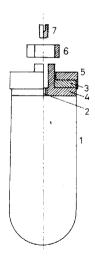


FIG. 1

Polypropylene Measuring Cell

1 Core of polypropylene cell, 2 hole for syringe needle, 3 packing, 4 closure body, 5 closure cover, 6 tightened nut, 7 plug screw.

* Present address: Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 162 06 Prague 6.

782

Mutual Solubility of Components in the Water(2)-1-Butanol(3) System

w ₃	t, °C	w ₃	t, °C
0.073	82.7	0.365	124.3
. 0.083	94.0	0.380	124.2
0.089	98 .5	0.414	123.9
0.103	107-2	0.455	123.1
0.117	111.6	0.500	121.0
0.126	114.0	0.521	119-8
0.149	117.8	0.526	119-3
0.184	121.7	0.568	115-2
0.186	121.9	0.604	110-2
0.207	123.1	0.629	106.1
0.261	124.1	0.634	105-2
0.297	124.3	0.666	98.7
0.318	124.4	0.672	97.3
0.325	124.4	0.698	90·1
0.340	124.4	0.705	87.1

TABLE II Smoothed Solubility Data in the Water(2)-1-Butanol(3) System

	t, °C	w ₂	w ₂	
	90	0·301 ₅	0·919 ₅	
	92·7 ^a	0.3105	0.9165	
	95	0.319	0.91	
*	100	0.341	0.909	
,	105	0.366	0·901 ₅	
	110	0.395	0.8885	
	115	0.434	0.869	
	120	0.483	0.8335	
	122	0.519	0.813	
	124	0.594	0.749	
	124·4 ^b	0.675		

^a Normal boiling point of heteroazeotrope. ^b Critical point.

TABLE III

TABLE IV

Composition of Coexisting Phases in the Methanol(1)-Water(2)-1-Butanol(3) System at 25°C

Water phase		Butanol phase		
 w ₁	w2	w ₁	w ₂	
0.015	0.912	0.010	0.214	
0.023	0.904	0.014	0.219	
0.041	0.882	0.027	0.230	
0.060	0.859	0.043	0.258	
0.071	0.847	0.054	0.265	
0.082	0.831	0.063	0.281	
0.101	0-808	0.081	0.323	
0.112	0.783	0.093	0.351 -	
0.120	0.763	0.101	0.378	

Mutual solubility of components in the water-1-butanol system was determined by the turbidity method with visual indication of turbidity in an apparatus described in another paper². The measured values are presented in Table I. A smooth curve was plotted through the experimental points and the composition of coexisting phases was determined at various temperatures (Table II). The coordinates of the critical point ($t_c = 124.4^{\circ}$ C, $w_{2c} = 0.675$, and/or $x_{2c} = 0.895$) were established by means of the Cailletet-Mathias rule.

Mutual solubility of components in the three-component system methanol-water-1-butanol was determined at temperatures 25, 45, and 65°C and the measured values are given in Tables III, IV, and V. For establishing the equilibrium, polypropylene measuring cells with a special aluminium-steel closure (Fig. 1), usually used with preparative ultracentrifuge Spinco, were used.

Water phase		Butanol phase		
 w ₁	w2	w ₁	w ₂	
0.015	0.925	0 011	0.235	
0.021	0.921	0.017	0.248	
0.038	0.896	0.031	0.264	
0.055	0.872	0.045	0.294	
0.078	0.839	0.069	0.338	
0.091	0.812	0.082	0.369	
0.096	0.798	0.088	0.391	

Composition of Coexisting Phases in the Methanol(1)-Water(2)-1-Butanol(3) System at 45°C

Collection Czechoslov. Chem. Commun. [Vol. 40] [1975]

These cells filled with corresponding solutions were tempered and after establishing equilibrium both phases were analyzed.

Analysis of equilibrium samples was carried out by a Giede gas chromatograph on a combined column: 1.5 m of the column filled with pulverized Teflon coated with 13% cetyl alcohol and 0.5 m of the column filled also with pulverized Teflon coated with 13% polyethylene glycol 600. Teflon appeared to be a very suitable support for chromatographic separation of water for other supports with the same stationary phases cause a considerable tailing of water peaks. On the other hand the Teflon columns are difficult to prepare³. Electrolytic hydrogen was used as a carrier gas. The optimum temperature of separation was 80° C and the pressure drop over the columns 0.1 atm/m. The analysis of every sample was repeated minimally four times to increase its accuracy. By using samples of a known composition, the accuracy of single component determina-

TABLE V

Composition of Coexisting Phases in the Methanol(1)-Water(2)-1-Butanol(3) System at 65°C

Water	Water phase		Butanol phase		
w ₁	w ₁	\overline{w}_1	\overline{w}_2		
0.015	0.922	0.013	0.264		
0.020	0.917	0.018	0.273		
0.038	0.897	0.034	0.295		
0.054	0.871	0.051	0.338		
0.077	0.833	0.074	0.419		

TABLE VI

Binodal Curve in the Methanol(1)-Water(2)-1-Butanol(3) System at 25°C

 <i>w</i> ₁	w ₂	w ₃
_	0.203	0.797
0.014	0.219	0.767
0.034	0.240	0.726
0.064	0.287	0.649
0.092	0.355	0.554
0.097	0.362	0.541
0.100	0.379	0-521
0.115	0.463	0.422
0.124	0.544	0.332
0.128	0.616	0.256
0.124	0.703	0.173

784

Methanol-Water-1-Butanol System

TABLE VII

Vapour-Liquid Equilibrium in the Methanol(1)-Water(2)-1-Butanol(3) System at a Pressure of 760 Torr

<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂	t, °C	Δy_1^{a}	Δy_2^{b}
0.437	0.531	0.708	0.277	75·46	-0.009	0.012
0.426	0.507	0.678	0.297	76.58	0.011	0.018
0.390	0.200	0.595	0.352	77.59	0.048	0.045
0.302	0.614	0.563	0.382	79 ·48	-0.008	0.013
0.295	0.586	0.542	0.395	80.11	-0.003	0.012
0-268	0-573	0.513	0.415	81-33	0.016	0.001
0.202	0.679	0.423	0.484	83.28	-0.001	0.013
0.187	0.643	0.395	0.498	83.88	0.012	-0.002
0.172	0.614	0.359	0.522	85.03	0.014	-0.001
0.164	0.576	0.332	0.539	85.40	0.006	0.006
0.145	0.534	0.306	0.550	86.16	0.014	0.011
Mean dei	iations				0.013	0.011

^{*a*} $\Delta y_1 = y_{1,exp} - y_{1,calc}$. ^{*b*} $\Delta y_2 = y_{2,exp} - y_{2,calc}$.

tion was estimated at approximately ± 1.2 weight percent. At 25°C the course of the binodal curve, established on the basis of direct analytical determination of composition of conjugated phases, was checked by titration. The data measured in this way are given in Table VI.

Measurement of the vapour-liquid equilibrium data in the three-component system was carried out in a modified Gillespie still⁴ at a constant pressure of 760 Torr and in the concentration regions where the liquid and vapour phase is homogeneous. The pressure was maintained at a constant value by the inert nitrogen atmosphere by means of a water tube manostat. The temperature was measured by standard thermometers with an accuracy of $\pm 0.01^{\circ}$ C. The analysis of the liquid and vapour phase samples was carried out in the same way as in case of the solubility determination. The experimental values are given in Table VII.

The binary constants needed for calculating the ternary system were calculated from the literature data (for the methanol(1)-water (2) system from⁵, for the methanol(1)-1-butanol(3) system from⁶, and for the water(2)-1-butanol(3) system from⁷) in terms of the Redlich-Kister equation⁸

$$\log (\gamma_1 / \gamma_2) = b_{12} (x_2 - x_1) + c_{12} (6x_1 x_2 - 1) + d_{12} (x_1 - x_2) (8x_1 x_2 - 1) + e_{12} (x_1 - x_2)^2 (10x_1 x_2 - 1).$$
(1)

Collection Czechoslov. Chem. Commun. [Vol. 40] [1975]

The following set of binary constants was calculated:

$$b_{12} = 0.2620, \quad c_{12} = 0.0938, \quad d_{12} = -0.0380,$$

$$b_{13} = 0.0672, \quad c_{13} = 0.0121,$$

$$b_{23} = 0.8440, \quad c_{23} = 0.2804, \quad d_{23} = 0.3481, \quad e_{23} = 0.2300.$$

By using the relations valid for the ternary system

$$\log (\gamma_1 / \gamma_2) = b_{12}(x_2 - x_1) + c_{12}[2x_1x_2 - (x_1 - x_2)^2] + + d_{12}(x_1 - x_2)[4x_1x_2 - (x_1 - x_2)^2] + b_{13}x_3 + c_{13}x_3(2x_1 - x_3) - - b_{23}x_3 + c_{23}x_3(x_3 - 2x_2) + d_{23}x_3(x_2 - x_3)(x_3 - 3x_2) + + e_{23}x_3(x_2 - x_3)^2 - C_{123}x_3(x_1 - x_2),$$
(2)

$$\log (\gamma_1 / \gamma_3) = b_{12} x_2 + c_{12} x_2 (2x_1 - x_2) + d_{12} (x_1 - x_2) x_2 (3x_1 - x_2) - - b_{13} (x_1 - x_3) + c_{13} [2x_1 x_3 - (x_1 - x_3)^2] - b_{23} x_2 + + c_{23} x_2 (2x_3 - x_2) + d_{23} (x_2 - x_3) x_2 (3x_3 - x_2) + + e_{23} (x_2 - x_3)^2 x_2 (4x_3 - x_2) - C_{123} x_2 (x_1 - x_3)$$
(3)

the ternary constant $C_{123} = -0.1363$ was calculated. The correlation of the experimental data gave a satisfactory agreement of measured and calculated values.

REFERENCES

- Timmermans J.: Physico-Chemical Constants of Pure Organic Compounds. Elsevier, New York 1950.
- 2. Matouš J., Novák J. P., Šobr J., Pick J.: This Journal 37, 2653 (1972).
- 3. Kohoutová J., Samohýl I.: Sborník Vysoké školy chemickotechnologické v Praze B 9 (1966).
- 4. Boublik T., Benson G. C.: Can J. Chem. 47, 539 (1969).
- 5. Kohoutová J., Suška J., Novák J. P., Pick J.: This Journal 35, 3210 (1970).
- 6. Polák J., Murakami S., Lam V. T., Pflug H. D., Benson G. C.: Can. J. Chem. 48, 2457 (1970).
- 7. Stockhardt J. S., Hull C. M.: Ind. Eng. Chem. 23, 1438 (1931).
- 8. Redlich O., Kister A. T.: Ind. Eng. Chem. 40, 345 (1948).

Translated by J. Linek.